Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Kitani, Patricia Massae |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-26042012-235529/
|
Resumo: |
Seja Cp um grupo cíclico de ordem p, onde p é um número primo tal que S = {1, , 1+\\theta, 1+\\theta+\\theta^2, · · · , 1 +\\theta + · · · + \\theta ^{p-3/2}} gera o grupo das unidades de Z[\\theta] e é uma raiz p-ésima primitiva da unidade sobre Q. No artigo \"Units of ZCp\" , Ferraz apresentou um modo simples de encontrar um conjunto de geradores independentes para o grupo das unidades do anel de grupo ZCp sobre os inteiros. Nós estendemos este resultado para ZCp^n , considerando que um conjunto similar a S gera o grupo das unidades de Z[\\theta]. Isto ocorre, por exemplo, quando \\phi(p^n)\\leq 66. Descrevemos o grupo das unidades de ZCp^n como o produto ±ker(\\pi_1) × Im(\\pi1), onde \\pi_1 é um homomorfismo de grupos. Além disso, explicitamos as bases de ker(\\pi_1) e Im(\\pi_1). |