Unidades de ZCpn

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Kitani, Patricia Massae
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-26042012-235529/
Resumo: Seja Cp um grupo cíclico de ordem p, onde p é um número primo tal que S = {1, , 1+\\theta, 1+\\theta+\\theta^2, · · · , 1 +\\theta + · · · + \\theta ^{p-3/2}} gera o grupo das unidades de Z[\\theta] e é uma raiz p-ésima primitiva da unidade sobre Q. No artigo \"Units of ZCp\" , Ferraz apresentou um modo simples de encontrar um conjunto de geradores independentes para o grupo das unidades do anel de grupo ZCp sobre os inteiros. Nós estendemos este resultado para ZCp^n , considerando que um conjunto similar a S gera o grupo das unidades de Z[\\theta]. Isto ocorre, por exemplo, quando \\phi(p^n)\\leq 66. Descrevemos o grupo das unidades de ZCp^n como o produto ±ker(\\pi_1) × Im(\\pi1), onde \\pi_1 é um homomorfismo de grupos. Além disso, explicitamos as bases de ker(\\pi_1) e Im(\\pi_1).