Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Silva, Renata Rodrigues Marcuz |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-27062012-154612/
|
Resumo: |
Seja p um número primo e seja uma raiz p - ésima primitiva da unidade. Considere os seguintes elementos i := 1 + + 2 + ... + i-1 para todo 1 i k do anel Z[] onde k = (p-1)/2. Nesta tese nós descrevemos explicitamente um conjunto gerador para o grupo das unidades do anel de grupo integral ZC2p; representado por U(ZC2p); onde C2p representa o grupo cíclico de ordem 2p e p satisfaz as seguintes condições: S := { -1, , u2, ... uk } gera U(Z[]) e U(Zp) = ou U(Zp)2 = e -1 U(Zp); que são verificadas para p = 7; 11; 13; 19; 23; 29; 53; 59; 61 e 67. Com o intuito de estender tais ideias encontramos um conjunto gerador para U(Z(C2p x C2) e U(Z(C2p x C2 x C2) onde p satisfaz as mesmas condições anteriores acrescidas de uma nova hipótese. Finalmente com o auxílio dos resultados anteriores apresentamos um conjunto gerador das unidades centrais do anel de grupo Z(Cp x Q8); onde Q8 representa o grupo dos quatérnios, ou seja, Q8 := <a; b : a4 = 1; a2 = b2; b-1 a b = a-1 >. |