Detalhes bibliográficos
Ano de defesa: |
1998 |
Autor(a) principal: |
Mizoi, Marcia Fumi |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-15032018-164925/
|
Resumo: |
Neste projeto, abordamos os modelos de séries temporais estacionárias do tipo AR(p) e MA(q). O interesse é obter para estes modelos as- estimativas de máxima verossimilhança exata. A diferenciação explicita da função de verossimilhança exata para se obter estas estimativas, não é recomendável por envolver operações complicadas. Assim, [Box, Jenkins e Reinsel - 1994] sugerem métodos numéricos baseados em aproximações. Em [Miller - 1995] são apresentadas expressões mais simples para as derivadas da função de verossimilhança junto com um algoritmo iterativo, no caso de modelos AR(p). O objetivo do presente projeto é propor o uso de algoritmos de simulação de Monte Carlo com Cadeia de Markov (MCMC) para o cálculo das estimativas de máxima verossimilhança. Aqui, os algoritmos utilizados foram o amostrador de Gibbs em conjunto com o algoritmo de Metropolis-Hastings. Os resultados obtidos usando MCMC são comparados com as estimativas feitas pelos métodos numéricos propostos em [Box, Jenlcins e Reinsel - 1994] e [Miller - 1995]. |