Detalhes bibliográficos
Ano de defesa: |
1990 |
Autor(a) principal: |
Prado, Eduardo Almeida |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20220712-114124/
|
Resumo: |
O objetivo deste trabalho e fornecer um estudo sistematico do teorema de kulkarni. Tal teorema nos responde quando o tensor curvatura de riemann de uma variedade riemaniana determina univocamente a sua metrica. Mais geralmente, dadas duas variedades riemanianas ('M IND.1', 'G IND.1') e ('M IND.2', 'G IND.2') e um difeomorfismo f:'M IND.1' 'SETA' 'M IND.2' que preserva a curvatura seccional, o teorema de kulkarni nos fornece condicoes para que f seja uma isometria. Este trabalho foi feito a partir dos artigos originais de kulkarni e de um artigo posterior escrito por yau. Tais artigos sao: - kulkarni, r. S. Curvature and metric. Ann. Math., 91, 1970. - Kulkarni, r. S. Curvature structures and conformal transformations. J. Diff. Geom., 4, 1970. - Yau, s. T. Curvature preserving diffeomorphisms. Ann. Math., 100, 1974 |