Detalhes bibliográficos
Ano de defesa: |
2005 |
Autor(a) principal: |
Ribeiro, Fabiano Lemes |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-17072009-111143/
|
Resumo: |
O objetivo desta dissertação foi a implementação de uma plataforma de otimização por Programação Genética (PG) com o intuito de estudar e caracterizar as propriedades estatísticas de uma grande classe de problemas. Esta implementação foi feita através de programas escritos em LISP, executados num {\\it cluster} de computadores com o sistema operacional Linux. A plataforma foi usada para estudar uma versão do {\\it Jogo da Minoria} (JM) onde seus jogadores utilizam redes neurais para a realização de suas escolhas. Os jogadores foram divididos em dois grupos distintos. O primeiro formado por jogadores que apresentam estratégias estáticas e portanto não adquirem aprendizado. O segundo grupo é formado por jogadores que utilizam um algoritmo de aprendizado para alterar suas estratégias de identificação da minoria. Mostramos que, em determinadas condições, estes jogadores adaptativos conseguem identificar padrões nas escolhas dos jogadores não-adaptativos e assim optam pela decisão da minoria. Porém a eficiência nesta identificação depende do algoritmo de aprendizado utilizado. O algoritmo de aprendizado gerado pela PG se apresentou mais eficiente que outros algoritmos analisados, como, por exemplo, o algoritmo hebbiano. Esta eficiência é caracterizada por uma emergência espontânea de coordenação entre estes jogadores e que lhes proporcionam um melhor desempenho médio por jogador. |