Generalização e Robustez: Aprendizagem em Redes Neurais na Presença de Ruído

Detalhes bibliográficos
Ano de defesa: 1997
Autor(a) principal: Simonetti, Roberta
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/43/43133/tde-17122013-145626/
Resumo: Neste trabalho investigamos o aprendizado supervisionado on-line, com ênfase nas habilidades de generalização, de redes neurais feedforward. O estudo de algoritmos de aprendizagem ótimos, no sentido da generalização, é estendido para duas diferentes classes de arquiteturas: a máquina paridade com estrutura de árvore e K unidades escondidas, e o perceptron reversed wedge, uma máquina de uma camada com função de transferência não monotônica. O papel do ruído é de fundamental importância na teoria de aprendizagem. Neste trabalho estudamos os processos com ruído que podem ser parametrizados por uma única quantidade, o nível de ruído. No caso da máquina paridade analisamos o aprendizado na presença de ruído multiplicativo (na saída). O algoritmo ótimo é muito superior aos algoritmos de aprendizagem até então apresentados, como o algoritmo de mínima ação (LAA), como podemos ver, por exemplo, através do comportamento do erro de generalização que decai após a apresentação de p exemplos, com l/p ao invés de l/\'p POT. 1/3\' como no caso do LAA. Além deste fato, observa-se que não existe um nível de ruído crítico a partir do qual a rede não é capaz de generalizar, como ocorre no LAA. Além do ruído multiplicativo, no caso do perceptron reversed wedge consideramos também o ruído aditivo. Analisamos a função de modulação fornecida pelo algoritmo ótimo e as curvas de aprendizagem. A aprendizagem ótima requer o uso de parâmetros que usualmente não estão disponíveis. Neste caso estudamos a influência da utilização de uma estimativa do nível de ruído sobre as curvas de aprendizado. Estes resultados são apresentados na forma do que chamamos de diagrama de robustez, no espaço de nível de ruído real versus nível de ruído estimado. As linhas de transição deste diagrama definem regiões com comportamentos dinâmicos diferentes. Entre as propriedades mais interessantes encontradas, destacamos a universalidade do diagrama de robustez para ruído multiplicativo, uma vez que é exatamente o mesmo para a máquina paridade e comitê com estrutura de árvore, e para o perceptron reversed-wedge. Entretanto, esta universalidade não se estende para o caso de ruído aditivo, uma vez que, neste caso, os diagramas dependem da arquitetura em questão.