Algoritmos eficientes para o problema do orçamento mínimo em processos de decisão Markovianos sensíveis ao risco

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Moreira, Daniel Augusto de Melo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-12022019-141016/
Resumo: O principal critério de otimização utilizado em Processos de Decisão Markovianos (mdps) é minimizar o custo acumulado esperado. Embora esse critério de otimização seja útil, em algumas aplicações, o custo gerado por algumas execuções pode exceder um limite aceitável. Para lidar com esse problema foram propostos os Processos de Decisão Markovianos Sensíveis ao Risco (rs-mdps) cujo critério de otimização é maximizar a probabilidade do custo acumulado não ser maior que um orçamento limite definido pelo usuário, portanto garantindo que execuções custosas de um mdp ocorram com menos probabilidade. Algoritmos para rs-mdps possuem problemas de escalabilidade quando lidam com intervalos de custo amplos, uma vez que operam no espaço aumentado que enumera todos os possíveis orçamentos restantes. Neste trabalho é proposto um novo problema que é encontrar o orçamento mínimo para o qual a probabilidade de que o custo acumulado não exceda esse orçamento converge para um máximo. Para resolver esse problema são propostas duas abordagens: (i) uma melhoria no algoritmo tvi-dp (uma solução previamente proposta para rsmdps) e (ii) o primeiro algoritmo de programação dinâmica simbólica para rs-mdps que explora as independências condicionais da função de transição no espaço de estados aumentado. Os algoritmos propostos eliminam estados inválidos e adicionam uma nova condição de parada. Resultados empíricos mostram que o algoritmo rs-spudd é capaz de resolver problemas até 103 vezes maior que o algoritmo tvi-dp e é até 26.2 vezes mais rápido que tvi-dp (nas instâncias que o algoritmo tvi-dp conseguiu resolver). De fato, é mostrado que o algoritmo rs-spudd é o único que consegue resolver instâncias grandes dos domínios analisados. Outro grande desafio em rs-mdps é lidar com custos contínuos. Para resolver esse problema são definidos os rs-mdps híbridos que incluem variáveis contínuas e discretas, além do orçamento limite definido pelo usuário. É mostrado que o algoritmo de programação dinâmica simbólica (sdp), existente na literatura, pode ser usado para resolver esse tipo de mdps. Esse algoritmo foi empiricamente testado de duas maneiras diferentes: (i) comparado com os demais algoritmos propostos em um domínio em que todos são capazes de resolver e (ii) testado em um domínio que somente ele é capaz de resolver. Os resultados mostram que o algoritmo sdp para rs-mdp híbridos é capaz de resolver domínios com custos contínuos sem a necessidade de enumeração de estados, porém em troca do aumento do custo computacional.