Planejamento probabilístico sensível a risco com ILAO* e função utilidade exponencial

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Freitas, Elthon Manhas de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/100/100131/tde-17012019-092638/
Resumo: Os processos de decisão de Markov (Markov Decision Process - MDP) têm sido usados para resolução de problemas de tomada de decisão sequencial. Existem problemas em que lidar com os riscos do ambiente para obter um resultado confiável é mais importante do que maximizar o retorno médio esperado. MDPs que lidam com esse tipo de problemas são chamados de processos de decisão de Markov sensíveis a risco (Risk-Sensitive Markov Decision Process - RSMDP). Dentre as diversas variações de RSMDP, estão os trabalhos baseados em utilidade exponencial que utilizam um fator de risco, o qual modela a atitude a risco do agente e que pode ser propensa ou aversa. Os algoritmos existentes na literatura para resolver esse tipo de RSMDPs são ineficientes se comparados a outros algoritmos de MDP. Neste projeto, é apresentada uma solução que pode ser usada em problemas maiores, tanto por executar cálculos apenas em estados relevantes para atingir um conjunto de estados meta partindo de um estado inicial, quanto por permitir processamento de números com expoentes muito elevados para os ambientes computacionais atuais. Os experimentos realizados evidenciam que (i) o algoritmo proposto é mais eficiente, se comparado aos algoritmos estado-da-arte para RSMDPs; e (ii) o uso da técnica LogSumExp permite resolver o problema de trabalhar com expoentes muito elevados em RSMDPs.