Deep learning and data warehousing techniques applied to real data in the medical domain

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Lima, Daniel Mário de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-01092023-164636/
Resumo: This study aims to increase the use of medical data and the ability to automated diagnosis through the integration and homogenization of the databases from the SI3 Health Information System of the Heart Institute (InCor / HC.FMUSP), and investigate the application of state-ofthe- art machine learning models known as Deep Learning, assessing the potential of Deep Learning to computerized diagnosis. As results, a database was prepared for clinical research in the OMOP-CDM format, called InCor-CDM. In the second study we obtained up to 91% overall accuracy in the classification of cutaneous lesions using a deep convolutional neural network on the ISIC database of dermatoscopic images. In the third paper we improved the segmentation of heart magnetic resonance images, on average, by 1.7% in the Dice metric and 2.5x in the training speed of a U-Net convolutional neural network using a localization algorithm. These results demonstrate steps of data preparation; deep learning applied to high-level medical concepts multi-classification for diagnosis; and deep learning applied to low-level image data Cardiac MRI image segmentation.