Strategies and techniques for deep learning on small data

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Pereira, Rafael Silva
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Laboratório Nacional de Computação Científica
Coordenação de Pós-Graduação e Aperfeiçoamento (COPGA)
Brasil
LNCC
Programa de Pós-Graduação em Modelagem Computacional
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.lncc.br/handle/tede/320
Resumo: The design of models enables the interpretation of complex problems. In computer Science, such models lead to the conception of algorithms and their implementation in computer systems, contributing to the problem solution. However, some problems are too complex to be described using an algorithmic approach. The introduction of machine learning methods aims to create models based directly on the collected data representing the observed phenomenon. While this approach led to great advances in many different fields, data driven methods often require a substantial amount of data in order to generalize its understanding of the modelled problem. In this work, we investigate the problem of small data for deep learning methods. We present strategies to minimize uncertainty on prediction by minimizing intra-class variation in classification tasks, constraining the solution space based on prior knowledge on the domain. Additionally, we discuss the few shot and zero shot scenarios, where we aim at training robust classifiers trough a fixed kernel function in order to create a model that generalizes for classes it was not trained upon. We present experiments for each of these and evaluate their properties on distinct datasets.