Modelagem de séries temporais para fins de previsão

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Farias, Hiron Pereira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-23052019-183018/
Resumo: Nesse trabalho, exploramos técnicas para análise de séries temporais para fins de previsão. Para tanto, foram considerados dados observados de três séries climáticas e de uma série econômica. Para análise das séries climáticas, foi considerada a modelagem multivariada em comparação com os subsequentes modelos univariados de cada série. Os modelos multivariados e univariados foram comparados com base em seus respectivos resultados preditivos. Para análise da série econômica, considerou-se a modelagem ARMA-GARCH, cuja média condicional e variância condicional são modeladas conjuntamente. Para essa mesma série foi realizada uma modelagem ARIMA em que considerou-se dois casos. No primeiro, a modelagem foi realizada na série original. No segundo, foi realizada na pré-modelagem uma filtragem na série, denominada de sistema de decomposição Wavelet- WavDS, com o objetivo de melhorar o poder preditivo. Na seleção dos modelos ARIMA, considerou-se a metodologia backtesting, em que as previsões são realizadas de forma sequencial, o modelo selecionado foi o que apresentou menor raiz quadrada do erro quadrático médio de previsão (REQM). Toda análise estatística realizada nesse trabalho foi com auxílio do software livre R.