Uma comparação de regressão logística, árvores de classificação e redes neurais: analisando dados de crédito

Detalhes bibliográficos
Ano de defesa: 2003
Autor(a) principal: Ohtoshi, Claudia
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-132841/
Resumo: Este trabalho tem como finalidade comparar quatro técnicas: Redes Neurais Artificiais, Árvore de Classificação Binária, Real Attribute Learning Algorithm (REAL) e Regressão Logística, aplicadas para definir um modelo de classificação que permita avaliar o risco do cliente de uma dada instituição financeira se tornar inadimplente. Para construção desses modelos foram utilizadas variáveis cadastrais e de utilização, ou seja, são modelos baseados não somente nas características do cliente, mas também no seu perfil de comportamento quanto à utilização de conta-corrente e cheque especial. Tais modelos têm sido utilizados por empresas que concedem crédito massificado, para classificar clientes quanto ao nível de risco e conceder novos créditos ou definir limites em função desse risco. Como resultado do estudo, foi observado que as Redes Neurais Artificiais e a Regressão Logística tiveram acerto superior às demais técnicas