Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Ragognette, Luis Fernando |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45132/tde-28032017-104513/
|
Resumo: |
A essência desta tese são resultados e aplicações da teoria de operadores de ordem infinita. A ideia central deste trabalho é um teorema de representação de ultradistribuições a partir de operadores ultradiferenciais agindo em funções Gevrey. Essa representação junto com a regularidade do kernel destes operadores nos permite importar uma dada propriedade válida para funções Gevrey para o contexto de ultradistribuições e vice-versa. Aproveitamos estes teoremas para aprender um pouco mais sobre a resolubilidade local de complexos induzidos por estruturas localmente integráveis. Definimos três conceitos de resolubilidade local destes complexos no ambiente Gevrey e provamos a equivalência entre eles. Para tanto, foi necessário estudar espaços de funções Gevrey com respeito a uma dada estrutura hipo-analítica e investigar quando este novo espaço é isomorfo ao usual. E isto nos permitiu entender melhor a ação dos operadores considerados e o papel por eles desempenhado nesta teoria. |