Operadores ultradiferenciais no estudo de resolubilidade e regularidade Gevrey

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Ragognette, Luis Fernando
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-28032017-104513/
Resumo: A essência desta tese são resultados e aplicações da teoria de operadores de ordem infinita. A ideia central deste trabalho é um teorema de representação de ultradistribuições a partir de operadores ultradiferenciais agindo em funções Gevrey. Essa representação junto com a regularidade do kernel destes operadores nos permite importar uma dada propriedade válida para funções Gevrey para o contexto de ultradistribuições e vice-versa. Aproveitamos estes teoremas para aprender um pouco mais sobre a resolubilidade local de complexos induzidos por estruturas localmente integráveis. Definimos três conceitos de resolubilidade local destes complexos no ambiente Gevrey e provamos a equivalência entre eles. Para tanto, foi necessário estudar espaços de funções Gevrey com respeito a uma dada estrutura hipo-analítica e investigar quando este novo espaço é isomorfo ao usual. E isto nos permitiu entender melhor a ação dos operadores considerados e o papel por eles desempenhado nesta teoria.