Classes de Gevrey em grupos de Lie compactos e aplicações

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Rodrigues, Nicholas Braun
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-23082016-201051/
Resumo: Nesse trabalho estudamos as classes de Gevrey e as ultradistribuições em grupos de Lie compactos, que é a generalização natural do toro no contexto de análise de Fourier. Para tal utilizamos a teoria de vetores Gevrey. Fazemos a caracterização dessas classes via o comportamento da transformada de Fourier como em [DR14], utilizando o operador de Laplace-Beltrami associado à uma métrica específica. Por final fazemos uma aplicação dessa caracterização em um problema de hipoelipticidade global como em [GW73].