Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Jahnke, Max Reinhold |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45132/tde-07022014-205830/
|
Resumo: |
Neste trabalho, introduzimos a noção de desenvolvimento assintótico em classes de Gevrey e mostramos como o conceito clássico de convergência de séries de potências pode ser generalizado para englobar o caso em que o raio de convergência é nulo. Essa técnica pode ser útil em situações em que é necessário trabalhar com séries formais, como no estudo de Equações Diferenciais. Caracterizamos o conjunto das funções holomorfas que admitem desenvolvimento assintótico e, em cada classe de Gevrey, definimos uma aplicação que associa uma função a uma série formal. Determinamos sob quais condições tal aplicação é sobrejetora e sob quais ela é injetora, possibilitando a ampliação do conceito de convergência e as aplicações da teoria. Além disso, mostramos como essa técnica pode ser usada para obter resultados em equações diferenciais. Para isso, fazemos uma breve introdução de Equações Diferenciais com uma variável complexa e introduzimos o conceito de Polígono de Newton, ferramenta que permite obter a classe de Gevrey de uma solução formal. Finalmente, encontramos condições para que a soma de uma solução formal de uma equação diferencial seja uma solução clássica. |