Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Pinto, Murilo Marques |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/18/18153/tde-01122023-122445/
|
Resumo: |
Este trabalho apresenta o desenvolvimento de um sistema especialista probabilístico para monitoramento de condição de hidrogeradores, visando apoiar as equipes de manutenção e operação desses ativos. O sistema foi construído após extenso levantamento na literatura, validado por especialistas, que correlacionou os sintomas do equipamento aos modos de falha correspondentes. Inicialmente, foram identificadas as principais técnicas utilizadas no monitoramento de hidrogeradores, bem como os defeitos relatados na literatura, analisando suas causas e modos de falha. Em seguida, o sistema inteligente de diagnóstico foi desen- volvido e testado em casos de defeitos previamente encontrados na literatura, obtendo uma alta taxa de acerto de até 91%. A aplicação desse sistema nas rotinas de manutenção de usinas hidrelétricas traz benefícios econômicos e socioambientais significativos, como a redução dos custos de falhas e manutenções, dos riscos de acidentes de trabalho e dos impactos ambientais. Para trabalhos futuros, estão previstos estudos para levantar novas probabilidades de sintomas e modos de falha não contemplados nesta versão do trabalho, bem como a validação do modelo com mais casos de falha. Além disso, está planejado o teste do sistema com dados reais de operação e manutenção de uma usina hidrelétrica, dentro do projeto Pesquisa e Desenvolvimento ANEEL PD-00622-0119/2019. |