Ano de defesa: |
2019 |
Autor(a) principal: |
Freitas, Dhyonatan Santos de |
Orientador(a): |
Camargo, Sandro da Silva |
Banca de defesa: |
Camargo, Sandro da Silva,
Ferreira, Ana Paula Lüdtke,
Gaspar, Emanuelle Baldo,
Carpes, Felipe Pivetta |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Pampa
|
Programa de Pós-Graduação: |
Mestrado Acadêmico em Computação Aplicada
|
Departamento: |
Campus Bagé
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://dspace.unipampa.edu.br:8080/jspui/handle/riu/4907
|
Resumo: |
A Ceratoconjuntivite Infecciosa Bovina (CIB) é considerada a doença ocular de maior importância na criação de bovinos, causando perdas no rebanho e prejuízos ao produtor. Por se tratar de uma doença infectocontagiosa é necessário que as formas de diagnóstico sejam aprimoradas. Atualmente, o diagnóstico para CIB é realizado por meio da avaliação dos sinais clínicos por um especialista e confirmados por exames laboratoriais, o que geralmente é uma tarefa custosa. Neste trabalho, é avaliada a utilização da termografia infravermelha para aquisição de imagens da região ocular bovina de animais sadios e experimentalmente infectados pela CIB. A base de imagens disponível foi previamente classificada por um especialista e, posteriormente, utilizada no processo de treinamento e validação de um conjunto de arquiteturas distintas de redes neurais convolucionais (RNC), as quais foram avaliadas utilizando validação cruzada. Os melhores resultados indicam que as RNC são capazes de identificar os sinais clínicos da CIB em imagens termográficas com acurácia próxima a 94%. |
---|