A inteligência artificial como auxílio ao diagnóstico em câncer bucal

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Tobias, Mattheus Augusto Siscotto
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/25/25149/tde-22062023-143537/
Resumo: Introdução: O câncer da boca poderia ser evitado na maior parte dos casos. A principal estratégia é baseada na prevenção primária, ou seja, no abandono ou na diminuição da exposição aos fatores de risco para a doença. O fato de a maioria dos portadores de carcinoma espionocelular (CEC) de boca chegar à rede hospitalar, no Brasil, com estadiamento avançado pode estar associado à falta de efetividade da atenção básica e primeiro atendimento profissional em realizar o diagnóstico precoce e em garantir o encaminhamento para profissional a especializado ou até mesmo ambiente hospitalar. Apesar da grande maioria dos cirurgiões-dentistas considerarem seu conhecimento sobre câncer oral como bom e também realizarem o exame clínico oral, geralmente não se tem conhecimento sobre o tipo de câncer mais comum da cavidade oral, a localização mais usual ou qual o tipo histológico mais comum. Objetivo: Este projeto se propõe a desenvolver redes neurais convolucionais treinadas para diagnóstico de câncer de boca e outras doenças da boca. Metodologia: Utilizando o software de gerenciamento de atendimentos da Universidade de São Paulo da FOB e FOUSP, pacientes foram identificados ao buscar por lesões de câncer de boca, categorizados e divididos. Imagens clínicas das lesões foram coletadas, assim como dados do prontuário. Também foram coletadas imagens de normalidade e lesões não cancerígenas. Após a coleta das imagens foi realizado um pré-processamento e um conjunto de arquiteturas foi treinado (aprendizado da rede neural). A partir das segmentações e imagens, foram treinadas diferentes arquiteturas de redes neurais visando a segmentação fina (pixel a pixel), classificação de recortes pequenos e classificações de imagens inteiras em relação à existência de lesão ou não. As arquiteturas estudadas foram avaliadas utilizando métricas padrão como Precisão, Revocação, F-measure. Devido à natureza sensível da tarefa de classificação, atenção especial foi dedicada à ocorrência de Falso Negativo durante a avaliação das abordagens utilizadas. Resultados: Os resultados para acurácia variaram entre 81,3% e 92% para redes multiclassificadoras, sendo a ResNet101 a rede de melhor performance. As arquiteturas treinadas apresentaram resultados promissores, compatíveis com o restante da literatura, tanto para classificação de lesões câncerígenas quanto outras doenças da boca. Conclusão: A utilização do software funcional dará suporte a todos os profissionais, independente do grau de conhecimento sobre o assunto, reduzindo falhas de diagnóstico.