Uma extensão da técnica AID em modelos lineares generalizados

Detalhes bibliográficos
Ano de defesa: 1993
Autor(a) principal: Barreto, Maria Cecilia Mendes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/11/11134/tde-20200111-145225/
Resumo: Como as técnicas de agrupamentos de médias podem ser inadequadas na aplicação em dados com distribuição diferente da gaussiana. o algoritmo “Automatic Interaction Detection” (AID) é estendido adotando-se como medida de homogeneidade de grupos uma estatística baseada na função desvio. Esta última pode ser utilizada em uma grande classe de modelos, conhecida como modelos lineares generalizados, que abrange modelos do tipo regressão, análise de variância, modelos logito e probito, modelos log-lineares, entre outros. Considerando um ensaio completamente ao acaso com K tratamentos e nk repetições por tratamento, o máximo da medida de homogeneidade de grupos e uma extensão do coeficiente de deter mi nação são obtidos em uma forma geral supondo que os dados tenham uma distribuição que pertença à família exponencial, e também no caso particular de distribuição· normal. binomial e Poisson. Supondo que os dados tenham distribuição binomial, a distribuição assintótica do máximo da medida de homogeneidade de grupos é obtida como sendo proporcional a uma distribuição qui-quadrado. Esses resultados são, também, uma extensão do procedimento de SCOTT & KNOTT (1974), para agrupamento de médias