Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Vasconcelos, Julio Cezar Souza |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-26072017-105153/
|
Resumo: |
Neste trabalho foi proposto o modelo linear parcial generalizado simétrico, com base nos modelos lineares parciais generalizados e nos modelos lineares simétricos, em que a variável resposta segue uma distribuição que pertence à família de distribuições simétricas, considerando um preditor linear que possui uma parte paramétrica e uma não paramétrica. Algumas distribuições que pertencem a essa classe são as distribuições: Normal, t-Student, Exponencial potência, Slash e Hiperbólica, dentre outras. Uma breve revisão dos conceitos utilizados ao longo do trabalho foram apresentados, a saber: análise residual, influência local, parâmetro de suavização, spline, spline cúbico, spline cúbico natural e algoritmo backfitting, dentre outros. Além disso, é apresentada uma breve teoria dos modelos GAMLSS (modelos aditivos generalizados para posição, escala e forma). Os modelos foram ajustados utilizando o pacote gamlss disponível no software livre R. A seleção de modelos foi baseada no critério de Akaike (AIC). Finalmente, uma aplicação é apresentada com base em um conjunto de dados reais da área financeira do Chile. |