Técnicas de diagnóstico nos modelos lineares generalizados com superdispersão

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Rodrigues, Heloisa de Melo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/12115
Resumo: No contexto de modelos de regressão, em alguns casos é comum o fenô- meno da superdispersão, que ocorre quando a variância observada dos dados excede aquela prevista por um modelo. Assim, Dey et al. (1997) desenvolveram os modelos lineares generalizados com superdispersão (MLGSs), considerando um modelo de regressão adicional para o parâmetro de dispersão, que é incorporado na função de variância. Desta forma, os MLGSs permitem modelar, simultaneamente, a média e a dispersão no contexto dos modelos lineares generalizados (MLGs) de Nelder e Wedderburn, 1972. Além disso, os MLGSs caracterizam-se por ser uma classe de modelos mais geral que os modelos lineares generalizados duplos (Smyth, 1989). Nesta dissertação são propostas técnicas de diagnósticos para os MLGSs, sendo desenvolvidas as técnicas de alavancagem generalizada, análise de resíduos, in uência global, como também o método de in uência local, este avaliado sob três esquemas de perturbação. Por m, é apresentada uma análise grá ca por meio de dados simulados.