Análise formal do aprendizado supervisionado por árvores de decisão

Detalhes bibliográficos
Ano de defesa: 2000
Autor(a) principal: Falleiros, Maurício Bellissimo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45134/tde-20210729-115619/
Resumo: Nesta dissertação apresentamos duas vertentes da pesquisa em aprendizagem computacional, uma formal e outra empírica, destacando o modelo de análise 'Provavelmente Aproximadamente Correto' (PAC) e o algoritmo REAL de indução de árvores de decisãosobre atributos de domínio real. A seguir, levantamos a curva de aprendizagem do algoritmo REAL sobre uma base de dados padrão para testes de algoritmos de aprendizagem desta natureza e comparamos esta curva com as previsões teóricas dadas pelomodelo PAC e pelo modelo de Convergência Uniforme. Fica evidente a grande lacuna entre estes resultados e então propomos algumas possibilidades de aprofundamento deste análise