Códigos de peso constante

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Nascimento, Ruth
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-07032015-113005/
Resumo: Sejam F_q um corpo finito com q elementos, e C_n um grupo cíclico de n elementos com mdc(q,n) = 1. Iniciamos nosso trabalho inspirados nos resultados de Vega, estabelecendo condições para que um código de F_qC_n tenha peso constante. Com tal resultado concluímos que um código de peso constante em F_qC_n é da forma {rg^ie | r em F_q, i variando de 0 a n}. A partir disto, determinamos a quantidade de códigos de peso constante de F_qC_n, e construímos exemplos de códigos de dois pesos em F_q(C_n X C_n). Em seguida, estabelecemos sob quais condições um código em F_qA, para A um grupo abeliano finito, tem peso constante. Analisamos também os códigos de peso constante em RG, quando R um anel de cadeia finito e C_n é um grupo cíclico de n elementos com mdc(n,q) = 1. Além disso, analisamos o caso em que os elementos de um ideal de RA, para R um domínio de integridade infinito e A um grupo abeliano finito têm peso constante.