Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Gambogi, Jarbas Aquiles |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3139/tde-23052014-012156/
|
Resumo: |
Este trabalho apresenta um sistema de trading que toma decisões de compra e de venda do índice Standard & Poors 500, na modalidade seguidor de tendência, mediante o emprego de redes neurais artificiais multicamadas com propagação para frente, no período de 5 anos, encerrado na última semana do primeiro semestre de 2012. Geralmente o critério usual de escolha de redes neurais nas estimativas de preços de ativos financeiros é o do menor erro quadrático médio entre as estimativas e os valores observados. Na seleção das redes neurais foi empregado o critério do menor erro quadrático médio na amostra de teste, entre as redes neurais que apresentaram taxas de acertos nas previsões das oscilações semanais do índice Standard & Poors 500 acima de 60% nessas amostras de teste. Esse critério possibilitou ao sistema de trading superar a taxa anual de retorno das redes neurais selecionadas pelo critério usual e, por larga margem, a estratégia de compre e segure no período. A escolha das variáveis de entrada das redes neurais recaiu entre as que capturaram o efeito da anomalia do momento dos preços do mercado de ações no curto prazo, fenômeno amplamente reconhecido na literatura financeira. |