Replicando estratégias de trading sintéticas utilizando redes neurais

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Fonseca, Raul do Vale
Orientador(a): Pinto, Afonso de Campos
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: https://hdl.handle.net/10438/24749
Resumo: Este trabalho constrói estratégias de trading sistemáticas e sintéticas com o objetivo de procurar ferramentas para replicá-las. São testados três modelos de regressão: regressão linear, regressão logística e um tipo de redes neurais artificiais, o multilayer perceptron (MLP). Para comparar a performance das regressões foram usadas três métricas de desvio do valor verdadeiro: diferenças absolutas, diferenças absolutas discretizadas e acurácia. A MLP é mais bem sucedida que as regressões logística e linear ao replicar uma estratégia trend following que usa como parâmetros médias móveis simples. Tentou-se replicar estratégias mean reversion que usam como parâmetros desvios padrão e preços máximos e mínimos num período. Nesses casos não houve clara distinção entre qual regressão foi mais bem sucedida. A acurácia dos modelos ao tentar replicar as estratégias foi maior que o sorteio aleatório em todos os casos.