Controle ótimo estocástico a tempo discreto e espaço de estado contínuo aplicado a derivativos.

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Maiali, André Cury
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3139/tde-15092006-155659/
Resumo: Nesta tese abordamos o problema do hedging de mínima variância de derivativos em mercados incompletos usando a teoria de controle ótimo estocástico com critério quadrático de otimização. Desenvolvemos um modelo geral de apreçamento e hedging de derivativos em mercados incompletos, a tempo discreto, que é capaz de acomodar qualquer tipo de payoff com característica européia que dependa de n ativos de risco. Nesse modelo, o mercado pode apresentar diferentes modos de operação, o que foi formalizado matematicamente por meio de uma cadeia de Markov. Também desenvolvemos um modelo geral de apreçamento e hedging de derivativos em mercados incompletos, a tempo discreto e espaço de estados contínuo, que é capaz de acomodar qualquer tipo de payoff com característica européia que dependa de um ativo de risco cujos retornos sejam representados por um processo de difusão com saltos. Desenvolvemos, ainda, expressões analíticas fechadas para o apreçamento e hedging de uma opção de compra européia vanilla em duas situações: (1) quando os retornos do ativo de risco são representados por um processo de difusão com saltos, e (2) quando os retornos do ativo de risco são representados por um processo de Wiener. Por fim, realizamos simulações numéricas para o controle (hedging) de uma opção de compra européia vanilla quando os retornos do ativo de risco são representados por um processo de Wiener, e comparamos os resultados obtidos com a estratégia de controle derivada do modelo de Black & Scholes.