Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Kawai, Daniel Eiti Nishida |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-26082022-142731/
|
Resumo: |
Apresentamos uma demonstração de uma generalização do Teorema de Frobenius-Zorn para R-álgebras algébricas alternativas à direita sem divisores juntos de zero. Estudamos conceitos e resultados básicos sobre álgebras normadas e mostramos uma generalização do Teorema de Gelfand-Mazur-Kaplansky sobre classificação das álgebras normadas alternativas à direita sem divisores topológicos juntos de zero. Depois estudamos a teoria básica de álgebras munidas com valor absoluto, apresentando o Teorema de Urbanik-Wright de que uma R-álgebra com valor absoluto e com unidade é isomorfa a R, C, H ou O. Fazemos um resumo da atual situação sobre a classificação de álgebras com valor absoluto de dimensão finita. Apresentamos alguns resultados sobre álgebras com valor absoluto satisfazendo algumas identidades. Mostramos que toda álgebra algébrica com valor absoluto tem dimensão finita e apresentamos uma classificação das álgebras de grau 2 com valor absoluto. |