Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Volpe Neto, Gilberto |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/55/55137/tde-01072024-101554/
|
Resumo: |
A evolução dos diversos efeitos causados pelo aumento da temperatura da Terra está se tornando cada vez mais frequente, tornando necessário implementar novas formas de trabalho para mitigar ao máximo o efeito estufa. Uma maneira de reduzir a emissão de gases do efeito estufa é por meio do crédito de carbono, onde empresas emissoras podem compensar suas emissões por meio de projetos de absorção de gases. A agricultura é uma das principais emissoras, mas através do cultivo adequado das plantas e do manejo correto do solo, ela também pode se tornar uma grande captadora de carbono. No entanto, os métodos atuais para medir a quantidade de carbono no solo são complexos e custosos. Portanto, este estudo tem como objetivo desenvolver um modelo de espaço de estados com dois compartimentos, um de decaimento lento e outro de decaimento rápido, para modelar a quantidade de carbono armazenado no solo. O modelo proposto foi testado em dois conjuntos de dados: um conjunto simulado e outro com medições de três terrenos no Canadá. No caso dos dados simulados, o modelo demonstrou alta eficácia na simulação das cadeias de Markov e na precisão preditiva. O índice de Gelman-Rubin ficou próximo de 1,03, indicando uma boa convergência das cadeias de Markov. Em termos de precisão do modelo, o MAPE - Mean Absolute Percentage Error foi de apenas 0,61%. No conjunto de dados dos terrenos canadenses, as cadeias de Markov também convergiram com qualidade, com um valor de R igual a 1 para os três terrenos. A precisão do modelo, avaliada pelo MAPE, foi de 5,29%, 0,017% e 0,021% para os terrenos analisados. Esses resultados evidenciam a eficiência do modelo na simulação e previsão do carbono orgânico no solo, tanto para dados simulados quanto para dados reais, fornecendo uma ferramenta confiável para entender as mudanças e os efeitos das práticas de manejo do solo ao longo do tempo. |