Abordagem bayesiana para polinômios fracionários

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Carvalho, Dennison Célio de Oliveira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/181746
Resumo: Em inúmeras situações práticas a relação entre uma variável resposta e uma ou mais covariáveis é curvada. Dentre as diversas formas de representar esta curvatura, Royston e Altman (1994) propuseram uma extensa famı́lia de funções denominada de Polinômios Fracionários (Fractional Polynomials - FP ). Bové e Held (2011) im- plementaram o paradigma bayesiano para FP sob a suposição de normalidade dos erros. Sua metodologia é fundamentada em uma distribuição a priori hiper − g (Liang et al., 2008), que, além de muitas propriedades assintóticas interessantes, garante uma predição bayesiana de modelos consistente. Nesta tese, compara-se as abordagens clássica e Bayesiana para PF a partir de dados reais disponı́veis na litera- tura, bem como por simulações. Além disso, propõem-se uma abordagem Bayesiana para modelos FPs em que a potência, diferentemente dos métodos usuais, pode as- sumir qualquer valor num determinado intervalo real e é estimada via métodos de simulação HMC (Monte Carlo Hamiltoniano) e MCMC (Métodos de Monte Carlo via Cadeias de Markov). Neste modelo, para o caso de um FP de segunda ordem, ao contrário dos modelos atualmente disponı́veis, apenas uma potência é estimada. Avalia-se este modelo a partir de dados simulados e em dados reais, sendo um deles com transformação de Box-Cox.