Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Silva, Davi Sousa e |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/70940
|
Resumo: |
The main objective of this work was to open a discussion on rainfall forecast models for Ceará and its macro-regions. For that, Bayesian models were analyzed, combining Generalized Linear Models (GLMs) and t-Student models with time series models. The proposed approach takes into account not only the historical series, but also dozens of covariates that, according to meteorological studies, are related to the rainfall phenomenon in Ceará. The proposed models use the LASSO algorithm for automatic model selection, in which the variables were selected through the AIC and SBC criteria. Thereafter, generalized linear models and t-Student models were fitted. ARIMA and SARIMA time series models were also fitted. The posterior estimates were obtained through stochastic simulation methods MCMC. |