Detalhes bibliográficos
Ano de defesa: |
2000 |
Autor(a) principal: |
Savioli, Angela Marta Pereira das Dores |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-123237/
|
Resumo: |
O principal objetivo deste trabalho foi o de caracterizar as extensões por um ponto de álgebra 'shod' estritas. As álgebras 'shod' surgiram no trabalho de Coelho-Lanzilotta [1917] e generalizam as álgebras quase-inclinadas introduzidas por Happel-Reiten-Smalo em [1928]. As extensões por um ponto de álgebras shod estritas se dividem em extensões por módulos decomponíveis não-projetivos e projetivos, e por módulos indecomponíveis. Dada uma álgebra 'shod' estrita A e um A-módulo M, estas extensões dependem essencialmente do lugar onde se encontra M em relação às subcategorias 'L. IND A' e 'R. IND A' de ind A |