Extensões por um ponto de álgebras 'shod'

Detalhes bibliográficos
Ano de defesa: 2000
Autor(a) principal: Savioli, Angela Marta Pereira das Dores
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-123237/
Resumo: O principal objetivo deste trabalho foi o de caracterizar as extensões por um ponto de álgebra 'shod' estritas. As álgebras 'shod' surgiram no trabalho de Coelho-Lanzilotta [1917] e generalizam as álgebras quase-inclinadas introduzidas por Happel-Reiten-Smalo em [1928]. As extensões por um ponto de álgebras shod estritas se dividem em extensões por módulos decomponíveis não-projetivos e projetivos, e por módulos indecomponíveis. Dada uma álgebra 'shod' estrita A e um A-módulo M, estas extensões dependem essencialmente do lugar onde se encontra M em relação às subcategorias 'L. IND A' e 'R. IND A' de ind A