Detalhes bibliográficos
Ano de defesa: |
1998 |
Autor(a) principal: |
Chalom, Alegria Gladys |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-021208/
|
Resumo: |
Sabemos por [P1] que, dada uma álgebra 'lâmbda'mansa, teremos que a forma quadrática de Tits 'q IND.'lâmbda' é fracamente não negativa, isto é, se 'lâmbda é mansa então 'q IND.'lâmbda'(z)'>OU='0, para todo z vetor-dimensão de coordenadas positivas. Além disso, a recíproca foi provada para algumas famílias de álgebras, porém não é válida em geral. O propósito deste trabalho é provar que, para certas categorias vectorespaciais selvagens IK = Hom(M,B - mod), onde B é uma álgebra inclinada mansa e M é um módulo indecomponível, teremos a forma 'q IND.B[M]' fortemente indefinida, o que nos fornece recíprocas parciais do teorema acima |