Pontos Umbílicos e Curvas Especiais em Superfícies no Espaço Minkowski

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Fernandes, Marco Antônio do Couto
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-21072021-164923/
Resumo: O estudo de superfícies no espaço Minkowski apresenta diferenças com relação ao caso Euclidiano. A mudança na primeira forma fundamental cria pontos onde a métrica pode se degenerar e pontos onde as direções principais coincidem. Tais conjunto são denotados por LD e LPL, respectivamente, e as suas singularidades dão origem aos pontos umbílicos. Este trabalho contêm um estudo a respeito da geometria diferencial de superfícies em R31 , abordando temas como as interseções entre o LD e o LPL, a multiplicidade de pontos umbílicos, deformações de fenômenos de codimensão 1 em famílias de superfícies a 1-parâmetro e a inversão de Möbius. Os resultados obtidos visam contribuir com uma possível generalização da Conjectura de Carathéodory no espaço Minkowski provada por Farid Tari.