Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
Ferreira, Bruno Leonardo Macedo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-23092019-132831/
|
Resumo: |
Estudamos a estrutura de álgebras de potências associativas que são álgebras train. Primeiramente, mostramos a existência de idempotentes, que são todos principais e absolutamente primitivos. Em seguida, vemos as equações train envolvendo a decom- posição de Peirce. Quando a álgebra é de dimensão finita, resulta que a dimensão das componentes de Peirce são invariantes e o limite superior para seus nilndices são es- tudados para alguns idempotentes. Além disso, mostramos que as álgebras localmente train são álgebras train. Damos então uma descrição completa para o conjunto dos idempotentes para obter suas fórmulas explcitas. É voltada uma atenção para o caso de álgebras de Jordan, onde discutimos condições para que álgebras train de potências as- sociativas sejam álgebras de Jordan. Também mostramos que álgebras train de Jordan são de dimensão finita. Para álgebras de Bernstein de ordem n e perodo p, provamos que para termos associatividade nas potências necessitamos p = 1. Neste caso, existem 2 n1 possibilidades de equações train, que são explicitamente descritas. |