Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
Martin, Thomas Newton |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/11/11136/tde-20032007-161308/
|
Resumo: |
A disponibilidade de recursos, tanto de ordem financeira quanto de mão-de-obra, é escassa. Sendo assim, deve-se incentivar o planejamento regional que minimize a utilização de recursos. A previsão de safra por intermédio de técnicas de modelagem deve ser realizada anteriormente com base nas características regionais, indicando assim as diretrizes básicas da pesquisa, bem como o planejamento regional. Dessa forma, os objetivos deste trabalho são: (i) caracterizar as variáveis do clima por intermédio de diferentes distribuições de probabilidade; (ii) verificar a homogeneidade espacial e temporal para as variáveis do clima; (iii) utilizar a distribuição normal bivariada para simular parâmetros utilizados na estimação de produtividade da cultura de soja; e (iv) propor um modelo para estimar a ordem de magnitude da produtividade potencial (dependente da interação genótipo, temperatura, radiação fotossinteticamente ativa e fotoperíodo) e da produtividade deplecionada (dependente da podutividade potencial, da chuva e do armazenamento de água no solo) de grãos de soja, baseados nos valores diários de temperatura, insolação e chuva, para o estado de São Paulo. As variáveis utilizadas neste estudo foram: temperatura média, insolação, radiação solar fotossinteticamente ativa e precipitação pluvial, em escala diária, obtidas em 27 estações localizadas no Estado de São Paulo e seis estações localizadas em Estados vizinhos. Primeiramente, verificou-se a aderência das variáveis a cinco distribuições de probabilidade (normal, log-normal, exponencial, gama e weibull), por intermédio do teste de Kolmogorov-Smirnov. Verificou-se a homogeneidade espacial e temporal dos dados por intermédio da análise de agrupamento pelo método de Ward e estimou-se o tamanho de amostra (número de anos) para as variáveis. A geração de números aleatórios foi realizada por intermédio do método Monte Carlo. A simulação dos dados de radiação fotossinteticamente ativa e temperatura foram realizadas por intermédio de três casos (i) distribuição triangular assimétrica (ii) distribuição normal truncada a 1,96 desvio padrão da média e (iii) distribuição normal bivariada. Os dados simulados foram avaliados por intermédio do teste de homogeneidade de variância de Bartlett e do teste F, teste t, índice de concordância de Willmott, coeficiente angular da reta, o índice de desempenho de Camargo (C) e aderência à distribuição normal (univariada). O modelo utilizado para calcular a produtividade potencial da cultura de soja foi desenvolvido com base no modelo de De Wit, incluindo contribuições de Van Heenst, Driessen, Konijn, de Vries, dentre outros. O cálculo da produtividade deplecionada foi dependente da evapotranspiração potencial, da cultura e real e coeficiente de sensibilidade a deficiência hídrica. Os dados de precipitação pluvial foram amostrados por intermédio da distribuição normal. Sendo assim, a produção diária de carboidrato foi deplecionada em função do estresse hídrico e número de horas diárias de insolação. A interpolação dos dados, de modo a englobar todo o Estado de São Paulo, foi realizada por intermédio do método da Krigagem. Foi verificado que a maior parte das variáveis segue a distribuição normal de probabilidade. Além disso, as variáveis apresentam variabilidade espacial e temporal e o número de anos necessários (tamanho de amostra) para cada uma delas é bastante variável. A simulação utilizando a distribuição normal bivariada é a mais apropriada por representar melhor as variáveis do clima. E o modelo de estimação das produtividades potencial e deplecionada para a cultura de soja produz resultados coerentes com outros resultados obtidos na literatura. |