Planejamento sob incerteza para metas de alcançabilidade estendidas

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Pereira, Silvio do Lago
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-09042008-105750/
Resumo: Planejamento sob incerteza vem sendo cada vez mais requisitado em aplicações práticas de diversas áreas que eequerem soluções confiáveis para metas complexas. Em vista disso, nos últimos anos, algumas abordagens baseadas no uso de métodos formais para síntese automática de planos têm sido propostas na área de Planejamento em Inteligência Artificial. Entre essas abordagens, planejamento baseado em verificação de modelos tem se mostrado uma opção bastante promissora; entretanto, conforme observamos, a maioria dos trabalhos dentro dessa abordagem baseia-se em CTL e trata apenas problemas de planejamento para metas de alcançabilidade simples (como aquelas consideradas no planejamento clássico). Nessa tese, introduzimos uma classe de metas de planejamento mais expressivas (metas de alcançabilidade estendidas) e mostramos que, para essa classe de metas, a semântica de CTL não é adequada para formalizar algoritmos de síntese (ou validação) de planos. Como forma de contornar essa limitação, propomos uma nova versão de CTL, que denominamos alpha-CTL. Então, a partir da semântica dessa nova lógica, implementamos um verificador de modelos (Vactl), com base no qual implementamos também um planejador (Pactl) capaz de resolver problemas de planejamento para metas de alcançabilidade estendidas, em ambientes não-determinísticos com observabilidade completa. Finalmente, discutimos como garantir a qualidade das soluções quando dispomos de um modelo de ambiente onde as probabilidades das transições causadas pela execução das ações são conhecidas.