Uma Abordagem Bayesiana em Modelos de Risco de Crédito

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Mendes, Erick Luciano Floriano
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55137/tde-30082022-143536/
Resumo: A decisão de aprovação ou não de uma proposta de crédito resulta basicamente em duas opções: ou o crédito é aprovado, ou o crédito é reprovado. Para a aprovação deste crédito as empresas utilizam usualmente o modelo de regressão logística com a estimação dos parâmetros baseada no Estimador de Máxima Verossimilhança, uma técnica considerada da Inferência Clássica, o que limita a usabilidade deste estimador. Uma das abordagens desafiantes muito discutida em pesquisas acadêmicas é a Inferência Bayesiana, em que os parâmetros dos modelos são interpretados como variáveis aleatórias com distribuições definidas a priori. Sendo assim, a proposta desta pesquisa foi a utilização de técnicas provenientes da Inferência Bayesiana para avaliar possíveis ganhos que essa abordagem poderia trazer frente à metodologia Clássica. As análises foram desenvolvidas a partir de uma base de dados com cerca de cem mil registros contendo informações da performance de crédito de uma instituição financeira e variáveis preditoras com informações de débitos,consultas, informações geográficas e cadastrais em todo o mercado de crédito. Em posse destas informações, foram testadas abordagens Bayesianas para a estimativa dos parâmetros do modelo, avaliando os resultados em termos de KS e AUC. Avaliouse também o ganho que as transformações Power Link na função e ligação logito poderiam trazer. Foram testados mais de 60 modelos Bayesianos diferentes, com resultados de KS e AUC bastante próximos aos resultados utilizando Inferência Clássica( melhor resultado de KS foi 26.8% e o melhor resultado de AUC foi de 33.0%). Sendo assim, ao final da pesquisa foi possível encontrar modelos Bayesianos com poder discriminante (KS e AUC) próximas ao modelo Clássico, porém com a grande vantagem de obter parâmetros agora com distribuições de probabilidade conhecidas.