Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Fernandes, Amélia Milene Correia |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/104/104131/tde-07042017-100311/
|
Resumo: |
Este trabalho tem como objetivo estudar o modelo de regressão binária nas abordagens clássica e bayesiana utilizando as funções de ligações probito, logito, complemento log-log, transformação box-cox e probito-assimétrico. Na abordagem clássica apresentamos as suposições e o procedimento para ajustar o modelo de regressão e verificamos a precisão dos parâmetros estimados, construindo intervalos de confiança e testes de hipóteses. Enquanto que, na inferência bayesiana fizemos um estudo comparativo utilizando duas metodologias. Na primeira metodologia consideramos densidades a priori não informativas e utilizamos o algoritmo Metropolis-Hastings para ajustar o modelo. Na segunda metodologia utilizamos variáveis auxiliares para obter a distribuição a posteriori conhecida, facilitando a implementação do algoritmo do Amostrador de Gibbs. No entanto, a introdução destas variáveis auxiliares podem gerar valores correlacionados, o que leva à necessidade de se utilizar o agrupamento das quantidades desconhecidas em blocos para reduzir a autocorrelação. Através do estudo de simulação mostramos que na inferência clássica podemos usar os critérios AIC e BIC para escolher o melhor modelo e avaliamos se o percentual de cobertura do intervalo de confiança assintótica está de acordo com o esperado na teoria assintótica. Na inferência bayesiana constatamos que o uso de variáveis auxiliares resulta em um algoritmo mais eficiente segundo os critérios: erro quadrático médio (EQM), erro percentual absoluto médio (MAPE) e erro percentual absoluto médio simétrico (SMAPE). Como ilustração apresentamos duas aplicações com dados reais. Na primeira, consideramos um conjunto de dados da variação do Ibovespa e a variação do valor diário do fechamento da cotação do dólar no período de 2013 a 2016. Na segunda aplicação, trabalhamos com um conjunto de dados educacionais (INEP-2013), focando nos estudos das variáveis que influenciam a aprovação do aluno. |