A unifying approach to isotropic and radial positive definite kernels

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Guella, Jean Carlo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10062019-145848/
Resumo: In this work, we generalize three famous results obtained by Schoenberg: I) the characterization of the continuous positive definite isotropic kernels defined on a real sphere; II) the characterization of the continuous positive definite radial kernels defined on an Euclidean space; III) the characterization of the continuous conditionally negative radial kernels defined on an Euclidean space. From this new approach, we reobtain several results in the literature and obtain some new ones as well. With the exception of S1 and R , we obtain necessary and sufficient conditions in order that these kernels be strictly positive definite and strictly conditionally negative definite.