Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Barbosa, Victor Simões |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-18032013-142251/
|
Resumo: |
Neste trabalho analisamos o papel das funções layout de um núcleo positivo definido K sobre um espaço topológico de Hausdor E com relação a duas propriedades específicas: a universalidade de K e a ortogonalidade no espaço de Hilbert de reprodução de K a partir de suportes disjuntos. As funções layout sempre existem mas podem não ser únicas. De uma maneira geral, a função layout e uma aplicação que transfere, convenientemente, informações do espaço E para um espaço com produto interno de dimensão alta, onde métodos lineares podem ser usados. Tanto a universalidade quanto a ortogonalidade pressupõem a continuidade do núcleo. O primeiro conceito exige que para cada compacto não vazio X de E, o conjunto de \"seções\" {K(., y) : y \'PERTENCE\' X} seja total no espaço de todas as funções contínuas com domínio X, munido da topologia da convergência uniforme. Um dos resultados principais do trabalho caracteriza a universalidade de um núcleo K através de uma propriedade de universalidade semelhante da função layout. A ortogonalidade a partir de suportes disjuntos almeja então a ortogonalidade de quaisquer duas funções do espaço de Hilbert de reprodução de K quando seus suportes não se intersectam |