Decaimento dos autovalores de operadores integrais gerados por núcleos positivos definidos

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Ferreira, Jose Claudinei
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-01042008-091207/
Resumo: Inicialmente, estudamos alguns resultados clássicos da teoria dos núcleos positivos definidos e alguns resultados pertinentes. Estudamos em seguida, o Teorema de Mercer e algumas de suas generalizações e conseqüências, incluindo a caracterização da transformada de Fourier de um núcleo positivo definido com domínio Rm£Rm, m ¸ 1. O trabalho traz um enfoque especial nos núcleos cujo domínio é um subconjunto não-compacto de Rm £ Rm, uma vez que os demais casos são considerados de maneira extensiva na literatura. Aplicamos esses estudos na análise do decaimento dos autovalores de operadores integrais gerados por núcleos positivos definidos