Detecção de patologias em plantações de eucaliptos com aprendizado de máquina

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Oliveira, Matheus Della Croce
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-23112016-085907/
Resumo: As plantações de eucaliptos representam grande potencial econômico para a indústria de papel, celulose, entre outras, além de apresentar uma série de características positivas como alta produtividade, grande potencial de adaptação e ampla diversidade de espécies. Em consequência a tais vantagens, há décadas diversas pesquisas vem sendo realizadas com o intuito de monitorar e detectar diversas doenças que aferem este tipo de cultura. O monitoramento rápido das doenças em eucaliptos torna-se um requisito para evitar grandes perdas econômicas. Neste projeto de pesquisa utilizou-se imagens aéreas obtidas por VANTs (Veículos Aéreos Não-Tripulados) para detectar um tipo específico de estresse que afeta as plantações de eucaliptos: a Murcha de Ceratocyst is. Após rotular eucaliptos doentes e saudáveis e outras estruturas em imagens aéreas, técnicas de Aprendizado de Máquina Supervisionado foram desenvolvidas para generalizar o conhecimento e possibilitar uma rápida detecção através das imagens RGB e multiespectrais. Dentre as técnicas utilizadas, destacou-se a arquitetura de Redes Neurais Convolucional chamada de Custom- CNN, inspirada no modelo da tradicional arquitetura Lenet -5 agregando-se melhorias do estado-da-arte, como a camada convolucional 1x1. Na classificação do conjunto RGB, a Custom-CNN obteve o maior F-score, de 0,81, sendo que a técnica SVM-rbf obteve 0,67. No conjunto de dados com imagens multiespectrais, a Lenet -5 e a Custom-CNN at ingiram, respectivamente, 0,63 e 0,66 de F-score, enquanto o SVM-rbf obteve 0,46. Esta dissertação apresenta a metodologia utilizada para a classificação, elencando as principais características dos algoritmos utilizados, bem como os resultados experimentais obtidos. Há ainda uma aplicação do classificador Regressão Logística para o planejamento de trajetória com VANTs.