Detalhes bibliográficos
Ano de defesa: |
2008 |
Autor(a) principal: |
Linn, Rodrigo de Marsillac |
Orientador(a): |
Rolim, Silvia Beatriz Alves |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/23707
|
Resumo: |
O objetivo do presente trabalho foi avaliar o uso potencial dos dados hiperespectrais do sensor orbital Hyperion/Earth Observing One (EO-1) e dos modelos de mistura espectral MESMA (Multiple Endmember Spectral Mixture Analysis) e SMA (Spectral Mixture Analysis) para discriminação de classes de cobertura da Planície Costeira do Rio Grande do Sul. O modelo MESMA difere do SMA por permitir que o número e o tipo de Membros de Referência (MRs), assim como sua abundância, variem pixel a pixel. A abordagem metodológica utilizada envolveu as seguintes etapas: (a) préprocessamento dos dados Hyperion e conversão dos valores de radiância para imagens atmosfericamente corrigidas de reflectância de superfície; (b) uso seqüencial das técnicas Minimum Noise Fraction (MNF), Pixel Purity Index (PPI) e Visualizador n- Dimensional, no intervalo de 454 a 2334 nm, para seleção inicial de um grupo de pixels candidatos a MRs (primeira biblioteca espectral) e de um outro grupo para fins de validação dos modelos; (c) uso do aplicativo VIPER (Visualization and Image Processing for Environmental Research) Tools para refinamento da primeira biblioteca espectral e seleção final dos MRs, utilizando as métricas EAR (Endmember Average RMSE), MASA (Minimum Average Spectral Angle) e CoB (Count Based Endmember Selection); (d) geração dos modelos MESMA e SMA com o VIPER Tools; e (e) comparação dos resultados dos modelos com base nas imagens-fração e nos valores de erro médio quadrático (RMSE). Os resultados obtidos mostraram que: (1) o uso seqüencial das técnicas MNF, PPI e Visualizador n-Dimensional pode constituir uma etapa inicial para identificar pixels candidatos a MRs, cuja seleção final pode ser feita com as métricas EAR, MASA e CoB. Usadas de forma combinada, essas métricas minimizam possíveis efeitos da baixa relação sinal-ruído do Hyperion; (2) os MRs selecionados representaram os principais componentes de cena como “água” (com clorofila, límpida e com sedimentos em suspensão), “vegetação verde” (pinus, eucalipto e gramíneas) e “solo” (dunas e campo seco); (3) Por utilizar número e tipo variáveis de MRs, o modelo MESMA produziu melhores resultados que o SMA. Quando aplicado sobre a imagem, sobre a amostra de validação e quando comparado com o SMA, o modelo MESMA de 4 componentes (Solo = dunas e campo Seco; vegetação verde = pinus, eucalipto e gramíneas; água = com Sedimentos em suspensão, sem Sedimentos e com clorofila; sombra) descreveu adequadamente a diversidade dos componentes de cena, incluindo materiais dentro de uma mesma classe (p.ex. pinus e eucalipto). O MESMA produziu menores valores de RMSE e uma maior quantidade de pixels modelados na cena (85% contra 55%) do que o SMA; (4) o VIPER mostrou-se uma ferramenta bastante eficaz para seleção dos MRs e geração dos modelos. Os resultados, como um todo, demonstraram o potencial da aplicação dos modelos MESMA com dados hiperespectrais do sensor Hyperion/EO-1, mesmo considerando a baixa relação sinal/ruído do instrumento, especialmente no infravermelho de ondas curtas (SWIR). |