NDVI e índices do espectro visível como descritores de uma Random Forest para classificar a cobertura do solo no entorno da Represa de Itupararanga - SP por meio de imagens do satélite CBERS4A

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Fernandes, Wanessa Monteiro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/243539
Resumo: O sensoriamento remoto tem grande destaque na análise e monitoramento da superfície terrestre, especialmente devido a possibilidade de analisar grandes extensões de área, com destaque para os métodos computacionais que utilizam índices baseados nos canais do espectro eletromagnético. Visto isso, o objetivo deste estudo foi utilizar índices do espectro do visível e o NDVI (Normalized Difference Vegetation Index) obtidos a partir de imagens do satélite CBERS 4A em conjunto com a aplicação do classificador Random Forest para a análise de regiões no entorno da represa de Itupararanga, localizada na Região Metropolitana de Sorocaba (RMS). Para isso, utilizou-se os softawares QGis e Rstudio, nos quais foram realizados o pré-processamento das imagens, cálculo dos índices, coletas de imagens de treinamento das regiões características e implementação da Random Forest. As classes de cobertura do solo obtidas foram agricultura, área urbanizada, corpo hídrico, solo exposto, vegetação arbórea e vegetação rasteira, permitindo uma análise qualitativa e quantitativa pela Random Forest. Observou-se que o NDVI apresentou um melhor desempenho em relação aos outros índices utilizados na segmentação das diversas regiões de cobertura do solo, além da banda do infravermelho próximo (NIR), sendo os descritores mais relevantes para a classificação das regiões usando a Random Forest.