Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Fernandes, Wanessa Monteiro |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/243539
|
Resumo: |
O sensoriamento remoto tem grande destaque na análise e monitoramento da superfície terrestre, especialmente devido a possibilidade de analisar grandes extensões de área, com destaque para os métodos computacionais que utilizam índices baseados nos canais do espectro eletromagnético. Visto isso, o objetivo deste estudo foi utilizar índices do espectro do visível e o NDVI (Normalized Difference Vegetation Index) obtidos a partir de imagens do satélite CBERS 4A em conjunto com a aplicação do classificador Random Forest para a análise de regiões no entorno da represa de Itupararanga, localizada na Região Metropolitana de Sorocaba (RMS). Para isso, utilizou-se os softawares QGis e Rstudio, nos quais foram realizados o pré-processamento das imagens, cálculo dos índices, coletas de imagens de treinamento das regiões características e implementação da Random Forest. As classes de cobertura do solo obtidas foram agricultura, área urbanizada, corpo hídrico, solo exposto, vegetação arbórea e vegetação rasteira, permitindo uma análise qualitativa e quantitativa pela Random Forest. Observou-se que o NDVI apresentou um melhor desempenho em relação aos outros índices utilizados na segmentação das diversas regiões de cobertura do solo, além da banda do infravermelho próximo (NIR), sendo os descritores mais relevantes para a classificação das regiões usando a Random Forest. |