Uso de assinaturas espectrais e veículos aéreos não tripulados para o diagnóstico automático de doenças de eucaliptos

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Chaves, Arthur Avelar
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-08052017-094906/
Resumo: Apresentando um papel de destaque no cenário nacional e internacional, o eucalipto possui rápido crescimento, alta produtividade, ampla diversidade de espécies, grande capacidade de adaptação e é aplicado em diferentes processos industriais, como por exemplo, produção de madeira, celulose e papel. No Brasil existem extensas áreas plantadas, principalmente nos estados de Minas Gerais, São Paulo e Paraná. Entretanto, eucaliptos são suscetíveis a doenças e pragas, o que pode trazer grandes prejuízo aos produtores. Tendo em vista esse contexto, surge a necessidade de detectar e diagnosticar doenças prematuramente, permitindo um combate ais eficaz e preciso a essas patologias. Visto que as plantações de eucalipto cobrem áreas muito extensas, o uso de VANTs (Veículos Aéreos Não-Tripulados) pode agilizar o processo de monitoramento, uma vez que podem sobrevoar grandes distâncias em pouco tempo. Sendo assim, esse trabalho desenvolveu um sistema de diagnóstico automático de doenças de eucalipto. Baseando-se em técnicas de detecção de ataques digitais, o diagnóstico é feito comparando assinaturas espectrais de plantas doentes com assinaturas conhecidas armazenadas em uma base de dados seguindo um modelo de assinaturas espectrais inspirado em um modelo de assinaturas de ataque. O sistema foi desenvolvido e validade utilizando dados de espectroradiômetros, apresentando precisão de até 96% em alguns casos.