[pt] O USO DE VANTS EM AJUDA HUMANITÁRIA: UMA METODOLOGIA BASEADA EM POMDP PARA ENCONTRAR VÍTIMAS
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30364&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30364&idi=2 http://doi.org/10.17771/PUCRio.acad.30364 |
Resumo: | [pt] O uso de Veículos Aéreos Não Tripulados (VANTs) na ajuda humanitária tem sido proposto por pesquisadores para localizar vítimas em áreas afetadas por desastres. A urgência desse tipo de operação é encontrar pessoas afetadas o mais rápido possível, o que significa que determinar a roteirização ótima para os VANTs é muito importante para salvar vidas. Como os VANTs tem que percorrer toda a área afetada para encontrar vítimas, a operação de roteirização se torna equivalente a um problema de cobertura. Neste trabalho, uma metodologia para resolver o problema de cobertura é proposta, baseada na heurística do Processo de Decisão de Markov Parcialmente Observável (POMDP), onde as observações feitas pelos VANTs são consideradas. Essa heurística escolhe as ações baseando-se nas informações disponíveis, essas informações são as ações e observações anteriores. A formulação da roteirização do VANT é baseada na ideia de dar prioridades mais altas às áreas mais propensas a terem vítimas. Para aplicar esta técnica em casos reais, foi criada uma metodologia que consiste em quatro etapas. Primeiramente, o problema é modelado em relação à área afetada, tipo de drone que será utilizado, resolução da câmera, altura média do voo, ponto de partida ou decolagem, além do tamanho e prioridade dos estados. Em seguida, a fim de testar a eficiência do algoritmo através de simulações, grupos de vítimas são distribuídos pela área a ser sobrevoada. Então, o algoritmo é iniciado e o drone, a cada iteração, muda de estado de acordo com a heurística POMDP, até percorrer toda a área afetada. Por fim, a eficiência do algoritmo é testada através de quatro estatísticas: distância percorrida, tempo de operação, percentual de cobertura e tempo para encontrar grupos de vítimas. Essa metodologia foi aplicada em dois exemplos ilustrativos: um tornado em Xanxerê, no Brasil, que foi um desastre de início súbito em Abril de 2015, e em um campo de refugiados no Sudão do Sul, um desastre de início lento que começou em 2013. Depois de fazer simulações, foi demonstrado que a solução cobre toda a área afetada por desastres em um período de tempo razoável. A distância percorrida pelo VANT e a duração da operação, que dependem do número de estados, não tiveram um desvio padrão significativo entre as simulações, o que significa que, ainda que existam vários caminhos possíveis devido ao empate das prioridades, o algoritmo tem resultados homogêneos. O tempo para encontrar grupos de vítimas, e portanto o sucesso da operação de resgate, depende da definição das prioridades dos estados, estabelecidas por um especialista. Caso as prioridades sejam mal definidas, o VANT começará a sobrevoar áreas sem vítimas, o que levará ao fracasso da operação de resgate, uma vez que o algoritmo não estará salvando vidas o mais rápido possível. Ainda foi feita uma comparação do algoritmo proposto com o método guloso. A princípio, esse método não cobriu 100 por cento da área afetada, o que tornou a comparação injusta. Para contornar esse problema, o algoritmo guloso foi forçado a percorrer 100 por cento da área afetada e os resultados mostram que o POMDP tem resultados melhores em relação ao tempo para salvar vítimas. Já em relação a distância percorrida e tempo de operação, os resultados são iguais ou melhores para o POMDP. Isso ocorre porque o algoritmo guloso tem o viés de otimizar distância percorrida e, logo, otimiza o tempo de operação. Já o POMDP tem como objetivo, nesta dissertação, salvar vidas e faz isso de forma dinâmica, atualizando sua distribuição de probabilidades a cada observação feita. O ineditismo desta metodologia é ressaltado no capítulo 3, onde mais de 139 trabalhos foram lidos e classificados com o intuito de mostrar quais são as aplicações que drones em logística humanitária, como o POMDP é usado em drones e como a técnica de simulação é utilizada em logística humanitária. Apenas um artigo propõe o uso de POMDP em operações de resgate com drones mas não aplica a técnica a casos reais. Pesquisas futuras podem aplicar a metodologia em desastres em áreas maiores, o que tornará necessário o uso de mais de um drone, pois a autonomia passará a ser uma restrição em termos de distância percorrida e tempo de operação. Outra sugestão é a aplicação da metodologia proposta em casos reais já que os pequenos VANTs são programáveis. Nesse caso, o experimento deve ocorrer em terrenos privados ou em áreas militares, para atender aos requisitos legais. |