Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Fogaça, David Augaitis |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-05102009-084141/
|
Resumo: |
Assumindo que a matéria nuclear seja um fluido perfeito, estudamos a propagação de perturbações na densidade bariônica. A equação de estado é obtida através de um modelo relativístico em campo médio, o qual é uma variante do modelo não-linear de Walecka. A expansão das equações de Euler e da continuidade na hidrodinâmica relativística em torno das configurações de equilíbrio nos levam a equações diferenciais para a perturbação na densidade. Resolvemos tais equações numericamente para perturbações lineares e esféricas mediante pulsos iniciais. Para perturbações lineares econtramos soluções solitônicas de pulsos isolados e soluções com vários solitons seguidas de ``radiação\'\'. Dependendo da equação de estado um forte amortecimento pode ocorrer. Consideramos também a evolução de perturbações em um meio sem efeitos dissipativos. Nesse caso observamos a formação e quebra de ondas de choque. Depois estudamos todo o formalismo na matéria nuclear em temperatura finita. Nossos resultados podem ser relevantes para análise de dados do RHIC. Eles sugerem que ondas de choque formadas na fase de plasma de quarks e gluons podem sobreviver e se propagar na fase hadrônica. Também estudamos a equação de onda não-linear para perturbações na densidade bariônica e densidade de energia no plasma de quarks e gluons (QGP). Sob certas condições solitons podem existir no QGP. Finalmente discutimos métodos alternativos de soluções de equações di-ferenciais não-lineares. |