Aplicação de técnicas de fatoração de matrizes esparsas para inferência em redes bayesianas.

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Colla, Ernesto Coutinho
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45134/tde-20220712-122220/
Resumo: O objetivo deste trabalho foi desenvolver uma aplicação computacional que demonstre como técnicas de álgebra linear computacional aplicadas a fatoração de matrizes esparsas podem ser utilizadas para construir um algoritmo eficiente e paralelizável para inferência em redes bayesianas. Para atingir este objetivo o algoritmo implementado separa o processo de inferência em duas fases, a primeira fase simbólica e uma segunda fase numérica. Como será demonstrado, o processamento numérico da segunda fase pode ser otimizado e paralelizado utilizando estruturas de dados estáticas previamente alocadas e definidas na primeira fase. Esta separação viabilizou-se pela análise de algoritmos de fatoração de matrizes esparsas e algoritmos para inferência em redes bayesianas a partir de um arcabouço combinatório unificado. as estruturas combinatórias geradas na fase simbólica e comum aos dois processos são a chave para a implementação computacionalmente eficiente de um algoritmo capaz de lidar com grandes modelos.