Redução do erro de classificação de redes neurais aplicada ao reconhecimento de fonemas multilocutor

Detalhes bibliográficos
Ano de defesa: 1992
Autor(a) principal: Alexandre Girardi
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Instituto Tecnológico de Aeronáutica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1705
Resumo: Neste trabalho foi desenvolvida uma camada de pre-processamento derivada de uma expansão de uma estrutura clássica de rede neural sem realimentação, que utiliza como algoritmo de treinamento o método de retropropagação do erro, aplicada ao reconhecimento de fonemas multilocutor. Esta camada de pré-processamento atua de forma que a rede possa determinar automaticamente o melhor conjunto de dados de entrada da rede, baseados em faixas de frequências, através dos erros propagados pela própria rede, de forma que esta não convirja para uma melhor classificação dos fonemas de entrada. Foram testadas para esse fim algumas estratégias associadas ao treinamento envolvido nesta camada de pré-processamento. Os experimentos condiziram ao desenvolvimento de uma estratégia capaz de reduzir o erro de classificação em média em 10% em relação ao obtido sem sua utilização.