Modelos de 'credit scoring': regressão logística, 'chaid' e real

Detalhes bibliográficos
Ano de defesa: 2000
Autor(a) principal: Rosa, Paulo de Tarso Marques
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-122749/
Resumo: O mercado financeiro de varejo brasileiro encontra-se em um momento de expansão da concessão de crédito, ocasionando um forte aumento na demanda por ferramentas capazes de avaliar o risco de inadimplência dos potenciais contratantes de produtos de crédito. Modelos estatísticos, denominados modelos de 'Credit Scoring', estão sendo utilizados para esta finalidade. Neste trabalho, descrevemos as caracteristicas dos processo de concessão de crédito e a partir de uma amostra de dados, fornecida por uma instituição financeira brasileira, aplicamos e comparamos três técnicas para classificação de clientes: a Regressão Logística Múltipla, o CHAID e o REAL. As duas primeiras técnicas são bastante utilizadas por profissionais do mercado e a terceira, trata-se de um novo algoritmo de Árvore de Classificação, sendo a primeira vez que é aplicado ao problema. Vantagens e desvantagens de cada um dos métodos são apresentadas