Detalhes bibliográficos
Ano de defesa: |
2000 |
Autor(a) principal: |
Rosa, Paulo de Tarso Marques |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-122749/
|
Resumo: |
O mercado financeiro de varejo brasileiro encontra-se em um momento de expansão da concessão de crédito, ocasionando um forte aumento na demanda por ferramentas capazes de avaliar o risco de inadimplência dos potenciais contratantes de produtos de crédito. Modelos estatísticos, denominados modelos de 'Credit Scoring', estão sendo utilizados para esta finalidade. Neste trabalho, descrevemos as caracteristicas dos processo de concessão de crédito e a partir de uma amostra de dados, fornecida por uma instituição financeira brasileira, aplicamos e comparamos três técnicas para classificação de clientes: a Regressão Logística Múltipla, o CHAID e o REAL. As duas primeiras técnicas são bastante utilizadas por profissionais do mercado e a terceira, trata-se de um novo algoritmo de Árvore de Classificação, sendo a primeira vez que é aplicado ao problema. Vantagens e desvantagens de cada um dos métodos são apresentadas |